Norman S Wright CO

Manufacturer's Representatives

Phoenix Albuquerque El Paso Tucson
602-275-4467 505-345-8811 915-772-9381 520-790-4490

Formulas

Air Side HVAC Formulas

BTUHTotal = BTUHSensible + BTUHLatent

BTUHSensible = $(1.08) \times (CFM) \times \Delta T$

BTUHTotal = $(4.5) \times (CFM) \times \Delta H$

ACH =

Pvelocity = = C = 136.8, g = 32.2

= PVelocity + PStatic

Water Side HVAC Formulas

 $BTUH = GPM \times 500 \times T \text{ (water)}$

TONS = $GPM \times \Delta T 24$ (CH water) (CT Ton = 15,000 BTUH)

 $FTHD = psi \times 2.31 S.G.$

NPSHA = ha - hvpa + hst - hfs

ha = Absolute Pressure in feet of liquid on surface supply level.

hvpa = Head in feet corresponding to vapor pressure of liquid at the temperature being pumped.

hst = Static height that the liquid level is above (+) or below (-) the pump centerline

hfs = All suction line losses including the entrance loss and friction losses through pipe, valves and fittings.

Heating

Btu/hr = GPM x 500 x T 1 GPM at 20°T = 10,000 Btu/hr Btu/hr / 10,000 = 1 GPM (@20°T)

Cooling

1 ton (CHW) = GPM x 500 x T/12,000 = 2.4 GPM (@10°T)

Latent heat

Btu/hr = $.68 \times CFM \times grains$

To cool air

Btu/hr = CFM x 4.5 x enthalpy (enthalpy from psych chart) GPM = Btu/hr / $(500 \times T)$

To heat air

Btu/hr = CFM x $1.08 \times T$

To humidify air

 $\#/hr H_2O = CFM \times 4.5 \times grains/7,000$

Pump horsepower

 $HP = GPM \times ft Head \times .0002525/eff$

Fan horsepower

HP = CFM x static pressure ("H₂O) .000157/eff

Electrical Equations

KVA = KW = KVA x P.F. = KW motor input = V = IR W = V x I = I^2 x R KWDC = $\underline{Amps \times Volts}$ 1,000